Methyl Migration by Epoxide Cleavage. The Effect of Carbonium Ion Stabilisation by a Neighbouring Double Bond on the Direction of Migration on Cleavage of 9β , 11β -Epoxy-4, 4-dimethylandrost-5-ene-3, 17-dione

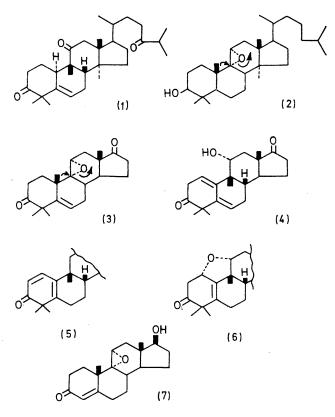
By J. W. ApSimon* and J. M. Rosenfeld

(Department of Chemistry, Carleton University, Ottawa, Canada)

Summary The stabilisation of a developing cationic centre by an adjacent double bond has been found to direct the migration of the 10-methyl group to C-9 on cleavage of 9β , 11β -epoxy-4, 4-dimethylandrost-5-ene-3, 17dione.

As a part of our interest in the synthesis of cucurbitacins, e.g., (1) we have studied the epoxide-cleavage-initiated migration of methyl groups¹ as a logical route to such systems, e.g., (2) (arrows). We have attempted this transformation, unsuccessfully, in several lanostane derivatives.2

In our earlier steroidal examples¹ more than one migration pathway was followed; thus, we decided to incorporate a further controlling feature in the migration route. Reasoning that a developing allylic tertiary cation would be a favoured pathway³ we cleaved epoxide (3) with BF₃ in benzene and obtained the dienedione (4) (m.p. 198-199°, $v_{\rm max}$ 3480, 1735, and 1711 cm⁻¹, $\lambda_{\rm max}$ 235 nm, ϵ 6150)[†] as the only product (t.l.c., >80% isolated yield).


The structure of (4) follows, besides spectral data, from its rearrangement in base to dieneone (5) (partial structure) $(\lambda_{\max} 300 \text{ nm}, \epsilon 6150)$, and under milder basic conditions to the Michael addition product (6) (no strong u.v. absorption above 210 nm; no OH by i.r. and n.m.r.; M^+ 328, base peak of m/e 286, $M - CH_2 = C = O$: reverse Diels-Alder). This process can best occur with a cis-BC ring junction.⁴

Epoxide (3) was synthesised in an unexceptional manner from androst-4-ene-3,11,17-trione. An interesting facet of this synthesis is the stability of epoxide (7) to the basic conditions (KOBu^t, Bu^tOH) used for 4,4-dimethylation.⁵

This highly efficient and controlled methyl migration procedure shows promise for the synthesis of a variety of terpenoids besides the cucurbitacins.

We thank the Upjohn Company for a generous gift of

starting material and the National Research Council of Canada for generous financial aid (J.M.R.-studentship, J.W.A.—Grant in aid of research).

(Received, August 10th, 1970; Com. 1336.)

+ Satisfactory analyses, and n.m.r. and mass-spectral data, were obtained for the new compounds reported.

- ¹ J. W. ApSimon, R. R. King, and J. J. Rosenfeld, Canad. J. Chem., 1969, 47, 1989.
- ² J. M. Rosenfeld, Ph.D. Thesis, Carleton University, 1970.

 ³ Cf. B. Henbest and T. I. Wrigley, J. Chem., 50c, 1957, 4596.
⁴ O. E. Edwards and T. Sano, Canad. J. Chem., 1969, 47, 3489.
⁵ Cf. B. Rickborn and R. P. Thummel, J. Org. Chem., 1969, 34, 3583; R. P. Thummel and B. Rickborn, J. Amer. Chem. Soc., 1970, 92, 2064, and references therein.